Package: forceplate 1.1-3

forceplate: Processing Force-Plate Data

Process raw force-plate data (txt-files) by segmenting them into trials and, if needed, calculating (user-defined) descriptive statistics of variables for user-defined time bins (relative to trigger onsets) for each trial. When segmenting the data a baseline correction, a filter, and a data imputation can be applied if needed. Experimental data can also be processed and combined with the segmented force-plate data. This procedure is suggested by Johannsen et al. (2023) <doi:10.6084/m9.figshare.22190155> and some of the options (e.g., choice of low-pass filter) are also suggested by Winter (2009) <doi:10.1002/9780470549148>.

Authors:Raphae Hartmann [aut, cre], Anton Koger [aut, ctb], Leif Johannsen [ctb]

forceplate_1.1-3.tar.gz
forceplate_1.1-3.zip(r-4.5)forceplate_1.1-3.zip(r-4.4)forceplate_1.1-3.zip(r-4.3)
forceplate_1.1-3.tgz(r-4.4-any)forceplate_1.1-3.tgz(r-4.3-any)
forceplate_1.1-3.tar.gz(r-4.5-noble)forceplate_1.1-3.tar.gz(r-4.4-noble)
forceplate_1.1-3.tgz(r-4.4-emscripten)forceplate_1.1-3.tgz(r-4.3-emscripten)
forceplate.pdf |forceplate.html
forceplate/json (API)

# Install 'forceplate' in R:
install.packages('forceplate', repos = c('https://raphaelhartmann.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/raphaelhartmann/forceplate/issues

On CRAN:

4.15 score 243 downloads 4 exports 4 dependencies

Last updated 8 months agofrom:041a0497d3. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 08 2024
R-4.5-winOKOct 08 2024
R-4.5-linuxOKOct 08 2024
R-4.4-winOKOct 08 2024
R-4.4-macOKOct 08 2024
R-4.3-winOKOct 08 2024
R-4.3-macOKOct 08 2024

Exports:combine_dataprep_exp_datasegment_fp_datatime_lock_stats

Dependencies:data.tableMASSsignalstringi